
Alternative Software Architecture
Development Approaches for

Lunar Surface Systems
Presented to the US Chamber of Commerce Programmatic

Workshop on NASA Lunar Surface Systems

Roscoe Ferguson
Graham O’Neil

26 February 2009

Page 33/3/2009

Lunar Surface Systems Concept Study Topic 5
• Objective is to provide NASA with

identified alternate software
development approaches and
architecture for the LSS to increase
software reliability and performance,
while decreasing the development and
maintenance costs of that software.

• Define Figures of Merit (FOM)
specifying significant contributors to
development and maintenance costs.

• Evaluate approaches in regards to
effectiveness against significant cost
drivers.

• Provide example of architecture as
applied to LSS.

Page 43/3/2009

Topics

• Lunar Mission from a Software Viewpoint
• Cost Drivers and Figures of Merit
• Development Approaches
• Software Architecture and Design
• Comparison and Results

Page 53/3/2009

Lunar Surface System Elements
• The LSS will consist of a fleet of systems

including crew habitats, rovers, power
systems, oxygen production plants, and
laboratory systems.

• Crew habitats will support a crew of 4 for
180 days on the lunar surface.

• Rovers will be operated autonomously or
by the crew. There will be pressurized
roving systems that can travel for
hundreds of kilometers.

• Power systems will produce at least 35
kW of net power production and storage
for eclipse periods.

• Oxygen production plants will produce
oxygen at a rate of 1 mT per year.

• Laboratory systems will provide
laboratories and instruments to meet
exploration and science objectives.

Page 63/3/2009

LSS Software Challenges
• Distributed Cooperation
• Distributed Failure Management
• C3I Compliance
• Varying Levels of Fault Tolerance
• Remote Operation
• Autonomous Operations
• Transitions from Dormancy to Reconstitution
• Integration of New Software on Non-Interference Basis
• Accommodation and Integration of International Partner Software Systems
• All complicated by operations in the Lunar environment.

Page 73/3/2009

Software Architecture and Development Models
• A software development process is a methodology used to control the

development of a software product.
• The Object Management Group (OMG) defines software architecture as the

specification of the parts and connectors of the system and the rules for the
interaction of the parts using the connectors.

• Software development processes and software architectures can have a
profound effect on software development and maintenance cost.

Page 83/3/2009

Software Architecture and Development Models

Simplified Software Lifecycle

Environment

3/3/2009

Cost Drivers and Figures of Merit

Page 103/3/2009

Identified Cost Drivers/Figures of Merit (FOM)
• Cost = labor*time
• Cost drivers associated with:

– Software Development Approaches

– Software Architecture

• Cost drivers attributed to time,
labor or both

Page 113/3/2009

Cost Drivers - Software Development Approaches

All Lifecycle Steps Tools

Lifecycle Steps

Page 123/3/2009

Cost Drivers - Software Architecture/Design

All except Requirements

Lifecycle Steps

All except Reviews/Inspections

3/3/2009

Development Approaches

Page 143/3/2009

Identified Development Approaches
• There are various models or approaches for

software development, but all can be broken
down into the steps of Requirements,
Design, Implementation, Verification, and
Maintenance.

• Each model provides a philosophy to realize
each step and the relationships between
them.

• Identified approaches are:
– Academic Waterfall Models

– Spiral Model

– Iterative Model

– Agile Methods

Page 153/3/2009

Identified Development Approaches

Page 163/3/2009

LSS and Development Approaches

• LSS has the potential to be
developed and maintained in
a dynamic and constrained
environment.

• Will have multiple elements
of varying criticality and
complexity.

• Possible approach:
– extract “best practices”

– apply them as needed in
combinations for LSS element
based on criticality and
complexity.

Page 173/3/2009

Development Approach Best Practices and Cost Drivers

• Modularized Requirements with Priority
– Allows scope to be broken up as required in modules
– Modules can be parts, subsystem, or entire system (for

simple systems)
– Can occur in parallel or phased

• Provide feedback to requirements module via working
software

– Trial and error to reduce risk
• Build verification test side by side with requirements (test

driven approach)
– Ensures requirements are testable

• Build unit tests before development (test driven approach)
– Provides quality first mentality for development

• Use Pair Implementation where two developers work together
at one machine. A driver enters the implementation and
another critiques it. Roles are periodically switched.

– Claimed to increase productivity
– High quality code (15% fewer defects) in about half the time

(58%). Williams, L., Kessler, R., Cunningham, W., & Jeffries,
R. Strengthening the case for pair programming. IEEE
Software, 17(3), July/August 2000

Page 183/3/2009

• Tight iteration durations and continuous testing
– Forces productivity
– Early and frequent error detection
– Increases feedback rate
– Minimizes specification to product divergence

• Use working software as progress
– Provides actual measure of progress

• Frequent collaboration with customers or
stakeholders

– Minimizes project divergence from expectation
– Customer or stakeholder really aware of program

state.
• Use Inspections/Reviews

– Dependable approach for quality
– Can be more efficient with use of analysis tools

and well established software and design
practices

Development Approach Best Practices and Cost Drivers

3/3/2009

Software Architecture and Design

Page 203/3/2009

Identified Alternate Software Architectures/Design

• Software Architecture and design
decisions have a direct effect on
development model lifecycle costs.

• The architecture and design
decisions should utilize modern
and proven key modern software
methods and techniques.

• Should also look for an
architecture approach that is
designed to support development
lifecycle concerns.

Page 213/3/2009

Apollo Program to Space Transportation System
• Assembly language style programming was the

status quo.
• Belief that high order languages with assembler

(code generation) was not usable.
• Competition was performed to determine feasibility

of modern software practice (high level
programming).

The competition showed that the approximate 10 percent loss in
efficiency resulting from the use of the high-order language was
insignificant when compared to the advantages of increased
programmer productivity, program maintainability, and visibility into
the software..

Use of high-level languages coupled with improved development
techniques and tools, productivity was doubled over the comparable
Apollo development processes.

Higher levels of abstraction and code generation improved the software development and productivity in the
1970’s and should be effective for the transition to the LSS.

Page 223/3/2009

Identified Design Decisions
• Abstraction and Constrained Code Generation

– Increase system understanding

– Provide consistent design patterns

– Build software like hardware, concepts implemented
as combinations of common design patterns and
principles

• Reuse
– Build common functions and components once for all

LSS elements to decrease cost and increase reliability.

• Component Based
– Modularize internal system to services with interfaces

• Interface Definitions
– For interoperable system to system interaction

definitions

• Decoupling
– Publish/Subscribe data distribution can improve data

accessibility both internally and test facility support.

ReuseReuse Abstraction and Abstraction and
Code GenerationCode Generation

ComponentsComponents

Interface DefinitionsInterface Definitions DecouplingDecoupling

LSS Software ArchitectureLSS Software Architecture

Page 233/3/2009

Identified Architecture
• Model Driven Architecture (MDA)

– Model Driven to direct the course of
understanding, design, construction,
deployment, operation, maintenance, and
modification.

– Platform based (layering)
• Requirements in Computation Independent

Models (CIMs)
• Application or domain logic in Platform

Independent Models (PIMs)
• Implementation and services in Platform

Specific Models (PSMs)
• Tools provide

– Traceability between CIM, PIM, and PSM.
– Model compilers and supporting artifacts.

• Promotes
– Portability
– Interoperability
– Reusability through architecture separation of

concerns

MDA ProcessMDA Process

Page 243/3/2009

Identified Software Architectures/Design and Cost Drivers

• Design Approaches
– Abstraction and Constrained Code Generation
– Reuse
– Component Based
– Interface Definitions
– Decoupling

• Architecture
– Model Driven Architecture (MDA)

Can be provided in technology such as
ARINC 653 RTOS

Independent of MDA and depends on
approach

Page 253/3/2009

Example of LSS using MDA
• Common platform services

provided by central authority as
form of middleware (PSMs)

• Reuse established in PSMs:
– system software
– distributed coordination
– fault tolerance support
– facility support
– C3I

• Domain logic implemented in
models encapsulated via
components and interfaces
(PIMs)

• Tools can support PIM and PSM
– Model Compilers for PIM (PSM can

be hand coded if required)
– Generate PSM based on LSS

element needs

Page 263/3/2009

Example of MDA Support of Technology Independence

• Domain logic implemented as Matlab models in
PIM is independent of technology.

• Can be generated to support alternate technology
such as “Reconfigurable Computing” using SRAM
Field Programmable Gate Arrays.

• Performance Gains
– control applications implemented directly in hardware

execute in parallel

• Increased Reliability
– Algorithms implemented using common and strict

hardware design patterns

– Removes complex software analysis tasks

3/3/2009

Comparison and Results

Page 283/3/2009

Program Evaluations of Improvement Contributions

Contributors\Program Shuttle ISS CEV QRMS Nuclear Power

Model Driven Architecture X X

Model Reuse X X X X

C3I X X X

Decoupling X X X

Simple Interface X X X

Page 293/3/2009

Typical High Maturity Development Process

Requirements Analysis

Code Inspection

Coding

Design Inspection
Design Documentation

Requirements Inspection

Scenario Review

Unit Test

Unit Test Inspection

Build and Configuration Management

Verification Test

Verification Test Review

Performance Test

Performance Test Review

0

50

20

30

40

10

60

80

90

100

70

0

50

20

30

40

10

60

80

90

100

70

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

16
8

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

16
8

Fl
ig

ht
 S

of
tw

ar
e

D
ev

el
op

m
en

t P
ro

ce
ss

 C
os

t,
Pe

rc
en

t

F li ht S ft D l t P D ti D

100% Cost
168 Days

This figure represents the life cycle of a single Space
Shuttle flight software requirements addition, deletion or
change.

Numerous requirements changes are implemented in
parallel. The resulting new software version is called an
Operational Increment, or OI.

Box height represents the percent cost
of the process step.

Box width represents duration
of the process step, in days.

Process steps are shown as
individually contiguous and sequential,
to provide an accurate representation
of total percent cost and total duration.

In practice, process steps can
overlap to some degree, and
several process steps can be
iterative.

Some process steps such as
Configuration Management are
pervasive throughout the entire
process.

Development Process Duration, DaysDevelopment Process Duration, Days

Page 303/3/2009

LSS Reuse Example: Basic Parameters

Platform Source Total Size Re-used New

Habitation System JSC Habitat Testbed 250 0 250

Oxygen Generation US Navy 80 70 10

Power System Commercial 100 80 20

Exploration Science Estimate 120 90 30

Rovers INEL 150 140 10

Page 313/3/2009

Assume The Following Characteristics…
• Latent Defect Rate is .1 defect per KSLOC. This would be very good.

• Defect Insertion Rate is 2%. This is very good.

• Probability a defect leads to a Crit 1 failure; Loss of Crew or Vehicle is 2%

• Latent Defect Removal Rate is 15% per year. This is very good.

Page 323/3/2009

Reuse Provides Additional Safety Margin

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15

Number of Lunar Surface Systems

Ti
m

e
To

 L
O

C
 W

ith
 R

eu
se

 /
Ti

m
e

To
 L

O
C

 W
ith

ou
t R

eu
se

Page 333/3/2009

Reuse Provides 50% Cost Reduction

0%

20%

40%

60%

80%

100%

120%

1 3 5 7 9 11 13 15

Number of Lunar Surface Systems

D
ev

el
op

m
en

t C
os

t W
ith

 R
eu

se
 /

D
ev

el
op

m
en

t C
os

t W
ith

ou
t R

eu
se

Page 343/3/2009

Model Driven Architecture Results

Page 353/3/2009

Optimized High Maturity Software Development Process

Requirements Analysis

Requirements Inspection
Scenario Review

Unit Test

Build and
Configuration
Management

Verification Test

Verification Test Review

Performance Test

Performance Test Review

Auto Coding

0

50

20

30

39

10

60

80

90

100

70

0 10 20 30 40 50 60 70 80 10
0

11
0

12
0

13
0

14
0

15
0

16
0

16
8

0

50

20

30

39

10

60

80

90

100

70

0 10 20 30 40 50 60 70 80 10
0

11
0

12
0

13
0

14
0

15
0

16
0

16
8

Fl
ig

ht
 S

of
tw

ar
e

D
ev

el
op

m
en

t P
ro

ce
ss

 C
os

t,
P

er
ce

nt

39% Cost
87 Days

 Remaing process steps shift to fill the
gap left by the modified processes,
resulting in overall process savings of
61 percent cost and 81 days duration.

The original process steps are
shown in gray for reference

This figure represents the projected process improvement
resulting from adoption of formal requirements notation, a
certified auto coder tool, an executable requirements modelling
tool, an automated verification test generation tool, and a
verification test coverage checking tool.

Projected use of a new certified auto coder tool is allocated
1 percent cost and 1 day duration.

Design documentation and design inspection are eliminated because
formal requirements contain enough detail to be used as design, and
are self-documenting. This assumes amendment of traditional
customer process requirements.

Requirements Inspection is projected to be reduced by half because the Executable
Requirements Modeler tool is a much more efficient way to examine requirements.

Unit test is projected to be reduced to 1 percent cost and
1 day duration, because correct logical function is
established during the requirements modeling activity.

Verification Test activities are projected to be reduced
by half, based on efficiencies introduced by the
automated Test Generator and Coverage Checker.

Design Documentation
Design Inspection
Code Inspection

Unit Test Inspection

87
87

Development Process Duration, Days

Page 363/3/2009

Additional Application Areas for LSS Software Solutions

• Systems with similar characteristics for high reliability, automation of complex
actions, driven by data that is dynamic in a dynamic environment.

– Human Medical Systems [both in-vivo and in silico]
– Urban Traffic Management
– Rail Road Control Systems
– Chemical Plants

Page 373/3/2009

Further Studies
• Reuse case studies to determine barriers and mitigations for improved reuse.
• Integration of Systems and Software in the Operational stage.
• Assessment of Competency in systems as part of IVHMS.
• Interfaces for Integration with International Partners
• Study of approaches for constrained code generation.
• Study of the use of tools to cut cost in the development lifecycle including

analysis aids and lifecycle support.
• Requirements and Design tool support for system dormancy and reconstitution

functions.

Page 383/3/2009

Conclusion

1. Reliability, quality and safety goals can be
met at reduced cost and effort of current
human space flight systems.

2. Most important contributors to cost
reduction for high reliability systems are
already being partially used.

3. Developing organization must focus on
standardization, inspection, test, and select
the appropriate development approach for
the system.

	Lunar Surface Systems Concept Study Topic 5
	Topics
	Lunar Surface System Elements
	LSS Software Challenges
	Software Architecture and Development Models
	Software Architecture and Development Models
	Cost Drivers and Figures of Merit
	Identified Cost Drivers/Figures of Merit (FOM)
	Cost Drivers - Software Development Approaches
	Cost Drivers - Software Architecture/Design
	Development Approaches
	Identified Development Approaches
	LSS and Development Approaches�
	Development Approach Best Practices and Cost Drivers
	Development Approach Best Practices and Cost Drivers
	Software Architecture and Design
	Identified Alternate Software Architectures/Design
	Apollo Program to Space Transportation System
	Identified Design Decisions
	Identified Architecture
	Identified Software Architectures/Design and Cost Drivers
	Example of LSS using MDA
	Example of MDA Support of Technology Independence
	Comparison and Results
	Program Evaluations of Improvement Contributions
	Typical High Maturity Development Process
	LSS Reuse Example: Basic Parameters
	Assume The Following Characteristics…
	Reuse Provides Additional Safety Margin
	Reuse Provides 50% Cost Reduction
	Model Driven Architecture Results
	Optimized High Maturity Software Development Process
	Additional Application Areas for LSS Software Solutions
	Further Studies
	Conclusion

